On Isometries of Intrinsic Metrics in Complex Analysis
نویسندگان
چکیده
We study isometries of the Kobayashi and Carathéodory metrics on strongly pseudoconvex and strongly convex domains in C and prove: (i) Let Ω1 and Ω2 be strongly pseudoconvex domains in C and f : Ω1 → Ω2 an isometry. Suppose that f extends as a C map to Ω̄1. Then f |∂Ω1 : ∂Ω1 → ∂Ω2 is a CR or anti-CR diffeomorphism. Hence it follows that Ω1 and Ω2 must be biholomorphic or anti-biholomorphic. (ii) The isometry group of a strongly convex domain in C is compact unless the domain is biholomorphic to the ball. The main tools for these results are a metric version of the Pinchuk rescaling technique and Lempert’s theory of extremal discs.
منابع مشابه
Surjective Real-Linear Uniform Isometries Between Complex Function Algebras
In this paper, we first give a description of a surjective unit-preserving real-linear uniform isometry $ T : A longrightarrow B$, where $ A $ and $ B $ are complex function spaces on compact Hausdorff spaces $ X $ and $ Y $, respectively, whenever ${rm ER}left (A, Xright ) = {rm Ch}left (A, Xright )$ and ${rm ER}left (B, Yright ) = {rm Ch}left (B, Yright )$. Next, we give a description of $ T...
متن کاملOn the Holomorphicity of Isometries of Intrinsic Metrics in Complex Analysis
Let Ω1 and Ω2 be strongly pseudoconvex domains in C and f : Ω1 → Ω2 an isometry for the Kobayashi or Carathéodory metrics. Suppose that f extends as a C map to Ω̄1. We then prove that f |∂Ω1 : ∂Ω1 → ∂Ω2 is a CR or anti-CR diffeomorphism. It follows that Ω1 and Ω2 must be biholomorphic or anti-biholomorphic. The main tool is a metric version of the Pinchuk rescaling technique.
متن کاملR-transforms for Sobolev H-metrics on Spaces of Plane Curves
We consider spaces of smooth immersed plane curves (modulo translations and/or rotations), equipped with reparameterization invariant weak Riemannian metrics involving second derivatives. This includes the full H2-metric without zero order terms. We find isometries (called R-transforms) from some of these spaces into function spaces with simpler weak Riemannian metrics, and we use this to give ...
متن کاملCombinatorial metrics: MacWilliams-type identities, isometries and extension property
In this work we characterize the combinatorial metrics admitting a MacWilliams-type identity and describe the group of linear isometries of such metrics. Considering coverings that are not connected, we classify the metrics satisfying the MacWilliams extension property.
متن کاملOn Commutators of Isometries and Hyponormal Operators
A sufficient condition is obtained for two isometries to be unitarily equivalent. Also, a new class of M-hyponormal operator is constructed
متن کامل